

Implementation of Communications Based Train Control (CBTC)

Presentation to RSAC Positive Train Control Group Federal Railroad Administration

November 9, 2000

Long Island Rail Road Implementation of CBTC Agenda

- Background
- **♦** Why CBTC?
 - **♦** LIRR needs
 - **♦** CBTC benefits
- **♦** Babylon to Montauk Project
 - **♦** Scope
 - **♦** Schedule & Progress
 - **♦** Budget
 - **♦** Next Steps

Background: Mission Statement

- ◆ Provide a complete stand-alone communicationbased train control (CBTC) system between Babylon and Montauk that increases service capacity and improves operational safety.
- **◆** Establish a standard for all future systems such that CBTC may be implemented system-wide to meet all service capacity, operational safety and on-time performance requirements in a costeffective manner.

Background: LIRR Signal Strategy

- **◆** Developed and adopted in 1997.
 - **♦** Long-term cohesive plan.
- **◆** Addresses safety and reliability in early phases.
 - **♦** Basis for current (2000-2004) capital program.
 - **♦** \$ 138 Million committed to signal projects.
- **♦** Addresses capacity expansion in later phases.
 - **♦** Plan for three subsequent capital programs determined.
 - **◆** Additional \$ 450 Million planned.
- **♦** CBTC plays a major role.

Why CBTC? LIRR Needs

- **♦** Improve operational safety.
 - **♦** "Dark" territory
- Expand system capacity.
 - **♦** Manual block
- **◆** Improve on-time performance.
- **♦** Reduce future costs.

Signal System Condition: 11/2000

Signal System Suitability: 11/2000 (Capability to support service)

Why CBTC? Benefits

- **♦** Improved operational safety
 - **♦** Positive stop
 - **♦** Continuous speed enforcement
 - **◆** Including civil / temporary restrictions and roadworker protection.
 - **♦** Consistent grade crossing warning time
- **♦** Increased capacity
 - **♦** Optimized train separation
 - **♦** Optimized speed enforcement

Why CBTC? Benefits

- **♦** Improved reliability / Reduced future costs
 - **♦** Elimination of track circuits for train detection
 - **♦** Simplified design / reduction in equipment
 - ◆ Use of "commercial off-the-shelf" (COTS) equipment

CBTC Block Diagram

Babylon to Montauk Project

- 10 -

Existing Physical Characteristics

- **♦** 78 miles
 - **♦** 13 miles double track with single direction automatic block signaling (ABS), no cab signals
 - **♦** 65 miles single track with manual block (dark)
- **♦** Four interlockings
- **♦** 98 grade crossings with active warning devices
- **♦** 16 Stations
- ◆ Class 4 track (80 MPH)

Existing Rolling Stock

- **◆** 23 DE-30 diesel locomotives
- **◆ 23 DM-30 dual-mode locomotives**
- ♦ 23 C-3 cab cars
- **♦** 101 C-3 coaches
- **♦** 20 conventional locomotives
 - **♦** LIRR work trains
 - **♦** New York & Atlantic

Existing Service Levels

♦ Trains

Territory	Daily Trains (approx.)		
	Total	Pass'gr	Other
Babylon to Patchogue (PD)	64	58	6
Patchogue (PD) to Speonk (SK)	38	34	4
Speonk (SK) to Montauk (MY)	24	22	2

Why Babylon to Montauk?

- ◆ Primarily "dark" territory / manual block operation
 - **♦** Opportunity for significant safety improvement.
 - **♦** Opportunity for improvement in operational capacity and flexibility.
 - **♦** No broken rail protection east of Patchogue.
- **◆** Maximum authorized speed is 65 MPH.
 - **◆** Due to fixed crossing approaches.
- **♦** Existing systems are obsolete.

Babylon to Montauk CBTC Goals

- **♦** Provide a complete stand-alone CBTC system that addresses LIRR needs.
 - **♦** Enhance suitability to support and improve service.
- **♦** Establish a CBTC standard for future systemwide implementation.
- **♦** Secure FRA approval.

Babylon to Montauk CBTC Scope

- **♦** Provide CBTC train separation.
 - **♦** Positive stop
 - **♦** Speed restriction enforcement
- **♦** Eliminate track circuits for train detection.
- **♦** Interlockings
 - **♦** Rehabilitate three.
 - **◆** Expand and rehabilitate one.
 - **♦** Add seven.

Babylon to Montauk CBTC Scope

- **♦** Grade crossings
 - **♦** Rehabilitate 98.
 - **♦** Add active warning devices to two.
 - **♦** Provide constant warning times at all 100.
- **♦** Provide for the movement of unequipped or "CBTC-failed" trains.
- **♦** Provide remote control capability.
 - **♦** Temporarily from Babylon Tower.
 - **♦** Long-term from new Jamaica Central Control.

Babylon to Montauk CBTC Scope

- **♦** Evaluate broken rail solution in long term.
 - **♦** Not an inherent part of current CBTC technology.
 - **♦** Allow for several years of technical development for more positive and cost effective protection.
 - **♦** No insulated joints or impedance bonds.
- **♦** Remove existing systems.
 - **♦** Track circuits
 - **♦** Wayside signals
 - **♦** Line and power cables

Babylon to Montauk Suitability

Existing:

After CBTC:

- **♦** Establish multi-disciplinary internal CBTC working group and steering committee.
 - **♦** Fosters cooperation and quick decisions.
- Develop general technical requirements.
- **♦** Establish a project partnering team.
 - **♦** LIRR
 - **♦** Vendor
 - **♦** FRA
 - **♦** Peer organizations
 - **♦** Labor organizations

- **♦** Issue RFI.
- Prepare specifications based on general technical requirements and RFI responses.
- **♦** Issue RFP for design/furnish contract.
- **♦** Evaluate proposals and award.

- **♦** Five-phase field implementation
 - **♦** Phase "0" (pre-CBTC)
 - **♦** Infrastructure renewal
 - **◆** Temporary conventional interlocking control
 - **◆** Temporary absolute block operation via existing track circuits
 - **♦** Phases 1 & 2
 - **♦** Train separation
 - **♦** Speed enforcement
 - **♦** Employee training

- **♦** Five-phase field implementation
 - ♦ Phases 3 & 4
 - **♦** Interlocking control by CBTC
 - **♦** Crossing control
 - **♦** Employee training
- **♦** Interoperability specification
 - **♦** Allow for future competition.

- **♦** Territory phasing
 - **♦** Phases "0", 1 & 3: Patchogue (PD) to Speonk (SK) only
 - **♦** Phases 2 & 4: Babylon (BY) to Montauk (MY)

Babylon to Montauk CBTC Budget Management

- **◆** Total available funding is \$27.4 Million.
 - **♦** Connected to project phases.
 - **♦** Each will be bid individually.
- **♦** Other available funds

Babylon to Montauk CBTC Schedule & Progress

Next Steps

- **♦** Continue outreach.
 - **◆** FRA
 - ◆ Outline for 236-H RSPP & PSP
 - **♦** Peer reviews
- **♦** Continue Phase "0".
 - **♦** Design
 - **♦** Construction
- **♦** Evaluate RFI responses.
- **♦** Develop specification.
- **♦** Issue RFP.

Next Steps

♦ Finalize scope and phasing.

Questions

